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Genotype-Specific Recurrence Risks as Indicators
of the Genetic Architecture of Complex Diseases

Montgomery Slatkin1,*

A statistic is introduced that relates discoveries made in genome-wide association (GWA) studies to patterns of disease risks among rel-

atives. The genotype-specific recurrence risk (GSR) is the genotype-specific risk to relatives of known relationship to affected probands.

The GSRs can be used for three purposes. (1) They can provide an independent test of whether an allele identified in a GWA study is

associated with the disease. (2) They can provide a test of whether interactions among loci affecting the disease are multiplicative.

(3) They can be used by genetic counselors to incorporate information from GWA studies for predicting the risk to relatives of known

genotype. Under a multiplicative model of disease causation, the GSRs for a locus are the genotypic risks in probands for that locus mul-

tiplied by lR/ljR, where lR is Risch’s recurrence risk ratio and ljR is the contribution to lR from the locus of interest. If there is saturation of

risk with increasing numbers of causative alleles, then observed GSRs for individuals with high-risk genotypes will be lower than pre-

dicted by the multiplicative model.
Complex inherited diseases are affected by many genes.

Although genome-wide association (GWA) studies have

detected numerous single-neucleotide polymorphisms

(SNPs) associated with elevated risk of inherited diseases,

the ways in which causative alleles interact, the extent to

which they are comparable in their effects on disease

risk, and their utility for genetic counseling are not well

understood. Here, I introduce a new set of statistics that

quantify the extent of risk to relatives of affected individ-

uals. The idea is closely related to affected-relative pair

(ARP) methods of gene mapping.1 In those methods, an al-

lele that is shared between affected relatives significantly

more often than expected from their relationship indicates

disease association. As noted by Risch,1,2 allele frequencies

at each locus and the way loci interact affect the probabil-

ity of allele sharing in affected-relative pairs and hence the

power of ARP mapping.

In this paper, I reverse the information flow. If an allele

has already been identified in a GWA study as being signif-

icantly associated with a disease, then the genotype-

specific risks to relatives of cases in the GWA study can

be estimated and those estimates can be compared with

predictions made under a multiplicative model of interac-

tions among loci. Testing groups of relatives of known re-

lationship can both confirm the association found in the

GWA study and indicate whether interactions among loci

deviate significantly from the multiplicative model. In

the following sections, I first define the genotype-specific

recurrence risks (GSRs) and derive an expression for them

under the multiplicative model of risk. Then, I present sim-

ulation results that demonstrate that GSRs predicted from

the multiplicative model differ substantially from observed

values if the multiplicative model is not valid. In particular,

if interactions among loci result in saturation of risk

(meaning that risk does not continue to increase with in-

creasing numbers of causative alleles), predicted GSRs for
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high-risk genotypes will be larger than observed values. Fi-

nally, although no data are available to test the predictions

made here, the feasibility of using the GSRs is illustrated

by using allele frequencies and genotypic risks for a SNP

associated with risk of age-related macular degeneration

(AMD).

Genotype-Specific Recurrence Risk

The recurrence risk, denoted by KR
3 where R indicates the re-

lationship (sibling, half-sibling, etc.), of an inherited disease

is the probability that a relative of an affected individual is

also affected. Risch3 introduced the risk ratio, lR ¼ KR/K,

where K is the prevalence of the disease, and showed that

under a multiplicative model of interactions among loci,

lR is the product of effects attributable to each locus,

lR ¼
YL

j¼1

ljR: (1)

The ljR are computed from the genotype frequencies and

genotype-specific contributions to risk from each locus.

The GSRs are related to the risk ratios. Assume that an al-

lele A at locus j is associated with increased disease risk. Let

the average risk to individuals with 2, 1, or 0 copies of A be

wj,2, wj,1, and wj,0. It is shown in Appendix A that, for the

multiplicative model, the disease risk in a relative with re-

lationship R who carries k ¼ 2, 1, or 0 copies of A is

r
ðRÞ
j,k ¼ wj,k

�
lR

ljR

�
: (2)

The quantities on the right hand side of Equation (2) can

all be estimated. The risk ratio, lR, is estimated from family

studies, and ljR is estimated from results obtained in the

GWA study.

Calculations analogous to those presented in Appendix

A show that Equation (2) can be generalized to sets of
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two or more unlinked loci. For example, if two loci, j and j0,

are identified as causative in a GWA study, then the geno-

type-specific risk in relatives can be shown to be

r
ðRÞ
jj0,kk0 ¼ wj,kwj0,k0

 
lR

ljRlj0R

!
(3)

under the multiplicative model.

Simulation Study

In order to determine how well the GSRs are predicted

when the risk model is not multiplicative, I carried out

a simulation study. Each simulation has several steps.

First, the model of risk and its parameters are chosen.

In some cases, this requires the random generation of

parameters for each locus according to rules specified

below. Second, allele frequencies at each locus are deter-

mined in such a way that the prevalence (K) of the dis-

ease is close to a specified value. Third, with the risk

model and set of allele frequencies determined, observ-

able statistics are estimated by randomly generating ge-

notypes of pairs of individuals, computing the statistics

for each pair, and then taking the average of a large num-

ber of replicate pairs. In a single simulation, neither the

parameters of the risk model nor the set of allele frequen-

cies change.

The model of risk assumes L diallelic loci, with one allele

(denoted by þ) associated with increased risk. The fre-

quency of þ at each locus is pj and the loci are assumed

to be at Hardy-Weinberg and linkage equilibrium. The ge-

notype of each locus is denoted by kj, which takes values 2,

1, and 0 if the locus has 2, 1, or 0þ alleles. The genotype of

an individual is denoted by a L-vector k¼ {k1, ., kL}. I con-

sidered three models of the dependence of risk f on k: the

unconstrained multiplicative, the constrained multiplica-

tive, and the threshold models.

In the unconstrained multiplicative model, the contri-

bution of genotype k at locus j, uj,k, to overall risk is uj,2 ¼
b1/L(1þrj), uj,1 ¼ b1/L(1þhjrj), and uj,0 ¼ b1/L. The overall

risk is the product across loci:

f ðkÞ ¼
YL

j¼1

uj,k: (4)

The parameter b is the background risk and the rj are the

maximum effects of each locus. In the simulations, either

the rj are random variables drawn from an exponential dis-

tribution with a specified mean, or they are all set to a spec-

ified value. The hj are the dominance parameters, which are

either drawn randomly and independently of the rj from

a uniform distribution on (0,1) or set to a specified value.

For some parameter values, f determined by Equation (4)

exceeds 1 for some genotypes. In the unconstrained multi-

plicative model, values of f > 1 are allowed. The con-

strained multiplicative model is the same as the uncon-

strained model except that, if the value in Equation (4)

is > 1, f is set to 1.
Th
The threshold model comes from quantitative genetics.

The model assumes that disease risk depends on an under-

lying liability, z, which is the sum of a genetic component,

x, and an environmental component, e. The genetic com-

ponent is the sum of contributions of each locus:

xðkÞ ¼
PL

j¼1 vjðkjÞ, where vj(2)¼ sj, vj(1)¼ hjsj, and vj(0)¼ 0.

The sj are either set to the same specified value or are gen-

erated from an exponential distribution with a specified

mean. The hj are either set to the same specified value or

generated from a uniform distribution on (0, 1). The envi-

ronmental component, e, is assumed to be a normally dis-

tributed random variable that is independent of x and has

mean 0 and variance s2
e . The model assumes there is

a threshold value of liability, T: the risk is b if z < T and 1

otherwise. With these definitions,

f ðkÞ ¼ bþ 1

2
ð1� bÞerfc

h
ðT � xðkÞÞ=

�
se

ffiffiffi
2
p �i

, (5)

where erfc is the complementary error function,

erfcðzÞ ¼ ð2=
ffiffiffi
p
p
Þ
RN

z expð�t2Þdt. If se < 1/4, f is equivalent

to a step function, considered by Lindsey.4 If se < 1/4

and 0 < T < 1, the threshold model is equivalent to the

heterogeneous model analyzed by Risch.3 For larger values

of se, f is a sigmoid function of x centered at x ¼ T.

For each risk model, allele frequencies are generated ran-

domly and independently of rj and hj with a specified coef-

ficient of variation, CV. This is done by first generating a set

of frequencies from a beta distribution with mean 1/2 and

coefficient of variation CV. Then, each frequency is multi-

plied by a factor that is adjusted until the prevalence K is

between 0.009 and 0.011. The coefficient of variation is

preserved when each frequency is multiplied by the same

factor.

In each simulation, K is estimated when the pj are deter-

mined. The next step is to estimate the genotype-specific

risks in probands (wj,k) by randomly generating replicate

individuals with specified genotypes at each locus (kj ¼ 2,

1, 0) and averaging over replicates. To estimate recurrence

risks and GSRs, genotypes of pairs of relatives at each locus

with various relationships are drawn independently from

the joint probabilities of genotypes of relatives in an out-

bred population. Independently drawing genotypes for

each locus is equivalent to assuming the loci are unlinked.

The simulated genotype-specific recurrence risks (r
ðRÞ
j,k ) are

found by conditioning on specific genotypes at each locus

in the relatives and taking averages over the remaining

loci. The predicted GSRs, denoted by brðRÞj,k , are computed

from Equation (2). The results in all the figures were based

on averages over 106 replicate pairs.

The figures show results only for full siblings (R ¼ S), but

the program produces results for first (parent-offspring),

second (half-siblings), and third (first cousins) degree rela-

tives also. The patterns for these other classes of relatives

are the same as for full siblings, but the effects are weaker

in second and third degree relatives because the risk ratios

are smaller.
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Figure 1. Predicted and Simulated Values of GSRs
Comparison of predicted and simulated values of the genotype-specific risk ratios (GSRs) in full siblings, r

ðSÞ
j,k, in the three models of

disease risk defined in the text. In all cases, L ¼ 25, b ¼ 10�6, h ¼ 0.5, CV ¼ 0.75, and all results are based on 106 replicates of the
simulation program described in the text.
(A) Unconstrained multiplicative model with rj ¼ 2 for all j. For the set of parameter values used, K ¼ 0.0104 and lS ¼ 4.65.
(B) Constrained multiplicative model with rj ¼ 2 for all j (K ¼ 0.00972, lS ¼ 4.56).
(C) Threshold model with sj ¼ 1 for all j, T ¼ 12, and se ¼ 1.5 (K ¼ 0.00924 and lS ¼ 4.43).
Simulation Results

In the first set of results, parameter values are the same at

all loci. In all three models, hj ¼ 1/2. In both multiplicative

models, rj¼ 2 and in the threshold model sj¼ 1. With these

restrictions, the models are exchangeable, meaning that

the risk depends only on the numbers of loci homozygous

and heterozygous for the þ allele, and not on the geno-

types at individual loci. In all cases, L ¼ 25, CV ¼ 0.75,

and frequencies were adjusted so that 0.009 < K < 0.011.

These parameter values were chosen so that the average ef-

fect of each locus and the recurrence risk to full siblings

(lS z 5) are comparable to what was found by Maller

et al.5 in their study of AMD (discussed below). Results

for other parameter values are similar.

In Figure 1A, the predicted and observed values of r
ðSÞ
j,k are

shown for the unconstrained multiplicative model. As
122 The American Journal of Human Genetics 83, 120–126, July 200
expected, the observed (filled symbols) and expected

(open symbols) values are essentially the same. Similar re-

sults were obtained with h ¼ 0 and h ¼ 1.

Figure 1B shows that the simulated and predicted

values of r
ðSÞ
j,k are no longer equal for the constrained mul-

tiplicative model. For the high-risk genotype, brðSÞj,2 > r
ðSÞ
j,2 .

The threshold model, with parameters chosen to have

roughly the same lS, yields results similar to the con-

strained multiplicative model. For both models, relatives

with the high-risk genotypes have a lower risk than is

predicted by the multiplicative model. The reason is

that risk saturates with the number of loci carrying caus-

ative alleles. If an individual has a high-risk genotype at

one locus, there is less potential for high-risk genotypes

at other loci to increase risk in those models than there

is in the unconstrained multiplicative model. Figure 2
Figure 2. Comparison of Predicted and Simulated GSRs
Graphical comparison of simulated and predicted values of the GSRs for the high-risk genotype (k ¼ 2) in full siblings, r

ðSÞ
j,2, in the three

models of disease risk defined in the text. The data are from Figure 1 for k ¼ 2. The 45� lines are drawn to facilitate comparison.
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Figure 3. Effects of Varying Allelic Contributions to Risk
Comparison of predicted, brðSÞj,k, and simulated, r

ðSÞ
j,k, values of the GSRs in full siblings with genotypes þ/þ (k ¼ 2) (A), þ/� (k ¼ 1) (B),

and �/� (k ¼ 0) (C) in the threshold models in which the rj vary among loci but h ¼ 0.5 for every locus. The parameters are the same as
in the threshold model in Figures 1 and 2, except that the sj are drawn from an exponential distribution with mean 1 (K ¼ 0.01097 and
lS ¼ 4.13).
shows the systematic difference for the high-risk geno-

types in another way that makes the patterns easier to

visualize.

If loci differ in their effects on risk (i.e., rj or sj vary), the

results are essentially the same, as illustrated in Figure 3 for

the threshold model. The GSRs for the high-risk genotypes

differ substantially from the predictions of the multiplica-

tive model. Similar results are obtained when the hj also

vary among loci, as shown in Figure 4.

Example

To illustrate how the theory presented here can be applied,

I use parameter values for a locus associated with elevated

risk of AMD (MIM 603075), the leading cause of blindness

among elderly people in developed countries. Maller et al.5

presented evidence that five SNPs are associated with

higher risk of AMD and that together they accounted for
Th
33%–67% of the recurrence risk to full siblings. Maller

et al. could not reject a multiplicative model of interaction

among these SNPs, even though the relatively large effects

on risk gave their test of deviations from the multiplicative

model considerable power. Effect sizes are larger than in

more recent GWA studies but the potential use of the

data is the same.

For one SNP, rs10490924 (MIM 61131) on chromosome

10, the frequency of T among cases was 0.455 and among

controls 0.194 (Table 2 in Maller et al.). From the assump-

tion of multiplicative interactions within a locus, these ob-

servations imply w2/w0 ¼ 12.03 and w1/w0 ¼ 3.45. The ab-

solute risks are age dependent. Vingerling et al.6 estimated

the prevalence of AMD in the Rotterdam study to be 1.7%,

with risk increasing from 0.1% in individuals 55–64 to

3.7% for individuals older than 85. If w0 is set to 0.017,

w2 ¼ 0.204 and w1 ¼ 0.059.
Figure 4. Effects of Varying Allelic Contributions and Heritabilities
Comparison of predicted, brðSÞj,k, and simulated, r

ðSÞ
j,k, values of the GSRs in full siblings with genotypes þ/þ (A), þ/� (B), and �/� (C) in

the threshold models in which the rj and hj vary among loci. The parameters are the same as in the threshold model in Figures 1 and 2,
except that se ¼ 2, the sj are drawn from an exponential distribution with mean 1, and the hj are drawn from a uniform distribution on
(0,1). For the set of parameter values used, K ¼ 0.0109 and lS ¼ 4.89.
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Maller et al.5 estimated the contribution of rs10490924

to overall recurrence risk in full siblings (corresponding

to ljS above) to be 1.45 and reported that estimated values

of lS were in the range 3–6. With the average lS ¼ 4.5, the

above theory predicts that r
ðSÞ
2 ¼ 0:20434:5=1:45 ¼ 0:633

and r
ðSÞ
1 ¼ 0:05934:5=1:45 ¼ 0:183. These are the esti-

mated risks to a proband’s full sibling carrying 2 and 1 cop-

ies of T at rs10490924 under the multiplicative model. The

confidence intervals of these estimates have to reflect the

uncertainty in both lS and ljS. If we assume the uncertainty

in lS dominates and use the range 3–6 as a confidence in-

terval, then 0:422 < r
ðSÞ
2 < 0:844 and 0:039 < r

ðSÞ
1 < 0:079

under the assumption of the multiplicative model.

As described in the Summary, there are three ways these

predictions can be used. The first is to provide confirma-

tion of the correlation between T at rs10490924 and

AMD. To illustrate, assume a group of full siblings of the

cases in the Maller et al. study can be tested for AMD and

that n of that group has genotype TT. If T were in fact

not associated with AMD, then the risk conditional on

the genotype at rs10490924 is just the risk expected in

full siblings, r
ðSÞ
2 ¼ 0:01736 ¼ 0:102 where the upper

bound of lS is used to be conservative. If n ¼ 100, then

observing 19 or more affected TT full siblings would reject

the null at the 1% level, by a one-tailed binomial test.

A second use of these predictions is to test the hypothe-

sis of multiplicative interactions. If we use the lower bound

of the predicted value of r
ðSÞ
2 , 0.422, and again assume

n¼ 100, then observing 30 or fewer TTaffected full siblings

would reject the multiplicative model at the 1% level by

a one-tailed binomial test.

A third use of these predictions is for genetic counseling.

For example, an individual who is homozygous for T at

rs10490924 and whose full sibling has AMD can be told

that the (non-age-adjusted) chance of getting AMD is

between 42.2% and 84.4%, provided that further study

confirms that rs10490924 is associated with AMD in the

population to which the individual belongs and that a

model of multiplicative interactions among loci is valid.

Discussion and Conclusions

This report shows that standard population genetics the-

ory can be used to predict genotype-specific risks in rela-

tives of affected probands, thereby providing (1) another

way to test whether SNPs identified in a GWA study are

causative, (2) another way to test whether the multiplica-

tive model of gene interactions across loci applies, and

(3) information needed to counsel relatives of affected

individuals. The main result is that the genotype-specific

risks to relatives of affected individuals are increased by

a factor that may be nearly as large as lR.

It is becoming accepted that results from GWA studies

offer little to genetic counselors. For example, the Well-

come Trust Consortium7 concluded, ‘‘These estimates

demonstrate the limited potential of the variants thus far

identified (singly or in combination) to provide clinically

useful prediction of disease.’’ That is true for individuals
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of known genotype at one or more SNPs identified as con-

ferring higher risk. The increase in risk is too small to be of

much predictive value. For relatives of cases, however, the

increase in risk may be substantially larger. For example, if

lS ¼ 5 and the high-risk genotype of an identified SNP has

a 20% higher risk, then a sibling with the high-risk geno-

type has a risk almost 6 times higher than the background

risk if the multiplicative model is valid.

The simulations verified that the predictions made by

the analytic theory for the unconstrained multiplicative

model were correct and also showed that if risk does not

continue to increase with increasing numbers of causative

alleles, predicted GSRs for the high-risk genotypes are too

large. The unconstrained multiplicative model is widely

used in theoretical studies both because of its mathemati-

cal simplicity and because it embodies the parsimonious

idea that each locus contributes to risk independently. Fur-

thermore, several studies, including that of Maller et al.,5

have found no significant deviation from a multiplicative

model of interactions among loci. However, as has been

shown elsewhere,8 it is difficult to parameterize the multi-

plicative model in such a way that the average risk (K) is

low (z0.01), the risk ratio to full siblings lS is relatively

high (z5), and the risk is %1 for all genotypes. The reason

is that low K and high lS together require a large variance in

risk among genotypes found in significant frequency in

the population.9 The only way to have a high variance

in risk and still ensure that f % 1 is to carefully adjust the

parameters so that f ¼ 1 for an individual homozygous

for high-risk alleles at every causative locus.8 It is likely,

however, that the number of potentially causative loci ex-

ceeds the number needed to create significant risk. In that

case, individuals with even more causative alleles will have

f > 1 under the unconstrained multiplicative model.

Constraining the multiplicative model so that f % 1

results in little change in either K or lS because they are

determined by the genotypes in highest frequency in a

population. Genotypes that result in f > 1 will have such

low frequencies that setting their risks to 1 does not change

K or lS by much. As we have seen, however, that constraint

does affect the GSRs. The reason is that, under the uncon-

strained multiplicative model, relatives of affected individ-

uals are predicted to have unfeasibly high risks with signif-

icant probability. If instead the risk model implies that

there is saturation of risk with increasing numbers of caus-

ative alleles, as is the case for both the constrained multi-

plicative model and the threshold model, then relatives

with high-risk genotypes have risks lower than predicted

by the unconstrained multiplicative model. Consequently,

detecting a lower-than-predicted genotype-specific recur-

rence risk indicates saturation of the risk as a function of

the number of causative alleles.

The theory presented in the previous sections assumes

that the allele identified in a GWA study is causative and

not simply in linkage disequilibrium with a causative al-

lele. Linkage to a causative allele would make no difference

provided that the two loci are closely enough linked that
8



no recombination between them is likely during the meio-

ses separating the relatives. For GWAs based on 500,000 or

more SNPs, implying an average map distance on the order

of 0.01 cM between adjacent SNPs, that condition is al-

most certainly satisfied.

The GSR statistics for full siblings, r
ðSÞ
k , are similar to

Rybicki and Elston’s10 conditional recurrence risk ratio, l�S,

which is the recurrence risk ratio in relatives of probands

having a specific ‘‘at risk’’ genotype. The difference is

that r
ðSÞ
k is estimated from siblings of all affected probands

whereas l�S is estimated from siblings of only those pro-

bands with a specific genotype. Appendix B derives a for-

mula for l�S for the unconstrained multiplicative model.

Although the two sets of statistics are closely related, l�S
cannot as easily be expressed in terms of observable quan-

tities.

The results presented here add support the point made

by Clerget-Darpoux and Elston11 and others that family

studies can provide important additional information in

this era of GWAs. Unrelated individuals are essential for

successful GWAs, but related individuals provide informa-

tion that is not available even from large samples of unre-

lated individuals. Determining the genotype-specific risks

to relatives of cases in a case-control study will minimize

the effects of population heterogeneity and other factors,

including the tendency for estimated effects of alleles iden-

tified in GWA studies to be biased upwards,12 that contrib-

ute to difficulties in replicating associations with disease

risk when independent populations are used.

Appendix A

The genotype-specific recurrence risks (GSRs) defined in

the text can be computed from the multiplicative model

via methods similar to those of Risch.3 Assume that locus

j of L loci has been identified as having a causative allele,þ.

Let gX,j and gY,j be the genotypes at locus j of the proband

(denoted by X) and the relative with relationship R (de-

noted by Y): gX,j, gY,j ¼ 2, 1, or 0, if the individual carries

2, 1, or 0 copies of þ at locus j.

Let X and Y be the affected status of the two relatives.

The GSR for locus j is defined to be

r
ðRÞ
j,k ¼ PrðY ¼ 1 jX ¼ 1,gY,j ¼ kÞ (A1)

for k ¼ 2, 1, 0.

Under the multiplicative model, X ¼
QL

j¼1xj and

Y ¼
QL

j¼1yj, where xj and yj are the contributions of locus

j to the overall risk:

Prðxj ¼ 1 j gX,j ¼ kÞ ¼ Prðyj ¼ 1 j gY,j ¼ kÞ ¼ uj,k:

For unconstrained multiplicative model, we recall from

Risch3

K ¼ PrðX ¼ 1Þ ¼
YL

j¼1

Pr
�
xj ¼ 1

�
¼
YL

j¼1

Kj, (A2)
Th
where Kj ¼ p2
j uj,2 þ 2pjð1� pjÞuj,1 þ ð1� pjÞ2uj,0, and pj is

the frequency of þ at locus j, and

lR ¼
PrðY ¼ 1 jX ¼ 1Þ

K
¼
YL

j¼1

Prðyj ¼ 1 j xj ¼ 1Þ
Kj

¼
YL

j¼1

ljR:

(A3)

Furthermore, the average risk given the genotype at

locus j is

wj,k ¼ PrðY ¼ 1 j gY,j ¼ kÞ ¼ uj,k

Y
j0sj

Kj0 : (A4)

where the product is over all j0 (1 % j0 % L) except j0 ¼ j.

From these equations it follows that

PrðY ¼ 1 jX ¼ 1,gY,j ¼ kÞ ¼ uj,k

Q
j0sj

Prðyj0 ¼ 1 j xj0 ¼ 1Þ

¼ uj,k

Q
j0sj

Kj0
Q
j0sj

Prðyj0 ¼1 j xj0 ¼1Þ
Kj0

¼ wj,k

�
lR

lj,R

�
:

(A5)

This result can be generalized to any number of loci iden-

tified as causative.

Appendix B

The GSR statistics defined in the text are closely related to

the conditional relative risks defined by Rybicki and El-

ston.10 The conditional risk for genotype k at locus j, l�k,R,

is defined to be

l�k,R ¼ PrðY ¼ 1 jX ¼ 1,gX,j ¼ kÞ (A6)

where, as above, X denotes the affected status of the pro-

band and Y denotes the affected status of the relative.

Note that in Equation (A6), the conditioning is on gX,j

whereas in Equation (A1) it is on gY,j.

With the assumption of independence across loci,

PrðY ¼ 1 jX ¼ 1,gX,j ¼ kÞ ¼ Prðyj ¼ 1 j xj ¼ 1,gX,j ¼ kÞ

3
Q
j0sj

Prðyj0 ¼ 1 j xj0 ¼ 1Þ

¼ Prðyj ¼ 1 j xj ¼ 1,gX,j ¼ kÞ
Q
j0sj

Kj0
Q
j0sj

lj0R:

(A7)

To evaluate the remaining conditional probability, we

use the fact that, given the genotype at locus j in the pro-

band (gX,j), the contribution of locus j to the risk in the rel-

ative (yj) depends only on gX,j and the relationship, and not

on the contribution of locus j to the risk in the proband

(xj):

Prðyj ¼ 1 j xj ¼ 1,gX,j ¼ kÞ ¼
P2
k0¼0

Prðyj ¼ 1 j gY,j ¼ k0Þ

3 PrðgY,j ¼ k0 j gX,j ¼ kÞ

¼
P2
k0¼0

uj,k0PrðgY,j ¼ k0 j gX,j ¼ kÞ:

(A8)
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where the conditional probability is obtained from the

Hardy-Weinberg frequencies and the probabilities of iden-

tity by descent in pairs of relatives. Substituting in Equa-

tion (A7) yields

PrðY ¼ 1 jX ¼ 1,gX,j ¼ kÞ ¼
�

lR

ljR

�X2

k0¼0

wj,k0

3 PrðgY,j ¼ k0 j gX,j ¼ kÞ:
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